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We present a lattice QCD calculation of the transversity isovector- and isoscalar-quark parton
distribution functions (PDFs) of the proton utilizing a perturbative matching at next-to-leading-
order (NLO) accuracy. Additionally, we determine the isovector and isoscalar tensor charges for
the proton. In both calculations, the disconnected contributions to the isoscalar matrix elements
have been ignored. The calculations are performed using a single ensemble of Nf = 2 + 1 highly-
improved staggered quarks simulated with physical-mass quarks and a lattice spacing of a = 0.076
fm. The Wilson-clover action, with physical quark masses and smeared gauge links obtained from
one iteration of hypercubic (HYP) smearing, is used in the valence sector. Using the NLO operator
product expansion, we extract the lowest four to six Mellin moments and the PDFs from the matrix
elements via a neural network. In addition, we calculate the x-dependence of the PDFs with hybrid-
scheme renormalization and the recently developed leading-renormalon resummation technique, at
NLO with the resummation of leading small-x logarithms.

I. INTRODUCTION

A significant goal of hadron physics is the determina-
tion of the full structure of nucleons. There has been
much progress towards this end, both experimentally
and theoretically. Experimentally, the leading-twist par-
ton distributions functions (PDFs) for both the unpolar-
ized and longitudinally polarized proton have been deter-
mined with high precision through global analyses [1–4]
of experimental data collected for example at HERA, the
Tevatron, the LHC, etc. In addition, to obtain the full
collinear structure at leading twist requires the transver-
sity PDF, which gives the difference in the probabil-
ity to find a parton aligned and anti-aligned with the
transversely polarized hadron. However, the transver-
sity PDF is less well constrained experimentally, but
measurements of the single transverse-spin asymmetries
from semi-inclusive deep-inelastic scattering (SIDIS) pro-
cesses by COMPASS [5] and HERMES [6], as well as
dihadron production in SIDIS by COMPASS [7, 8] and
HERMES [9], and pp collisions by RHIC [10–12], have led
to a series of extractions of the transversity PDF [13–30].
However, the uncertainties can still be as large as 40% or
more in the valence region [30]. One of the major goals of
the JLab 12 GeV upgrade and the upcoming Electron-
Ion Collider (EIC) is to gain more information on the
spin structure of the nucleon, including the transversity
PDF [31, 32].

On the theoretical side, there has been significant de-
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velopment in the first-principles calculations of PDFs
through lattice QCD (see reviews in Refs. [33–39]).
Among them, the two most widely used approaches
utilize either the quasi-PDF within the framework of
large-momentum effective theory (LaMET) [36, 40, 41]
or the pseudo-PDF [42, 43]. Both the quasi-PDF and
pseudo-PDF are defined from the matrix elements of a
gauge-invariant equal-time bilinear operator in a boosted
hadron state [40], which can be directly simulated on the
lattice. In the LaMET approach, the PDF can be cal-
culated from the quasi-PDF through a power expansion
and effective theory matching at large hadron momen-
tum, with controlled precision for a range of moderate
x. On the other hand, the pseudo-PDF method relies on
a short-distance factorization in coordinate space [44–
46], which allows for a model-independent extraction of
the lowest Mellin moments [46] or a model-dependent ex-
traction of the x-dependent PDF. Both methods require
larger hadron momenta to extract more information on
the PDF, and can complement each other in practical
calculations [47, 48].

Over the past decade, there have been a few calcu-
lations of the transversity PDF from lattice QCD using
both the quasi- [49–54] and pseudo-PDF [55] approaches,
which were all carried out with a next-to-leading-order
(NLO) perturbative matching correction. Among them,
the first physical pion mass calculations [50–52] were ac-
complished with the regularization-independent momen-
tum subtraction (RI/MOM) scheme [56–59] for the lat-
tice renormalization, which is flawed by the introduction
of non-perturbative effects at large quark-bilinear sepa-
ration. To overcome this problem, the hybrid scheme [60]
was proposed to subtract the Wilson line mass with
a matching to the MS scheme at large quark-bilinear
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separation, which was used in the recent calculation of
Ref. [54] with continuum and physical pion mass extrap-
olations. More recently, a systematic way to remove the
renormalon ambiguity in the Wilson-line mass matching,
called leading-renormalon resummation (LRR), was pro-
posed in Refs. [48, 61].

In this work we carry out a lattice QCD calculation
of the proton isovector and isoscalar quark transversity
PDFs at physical quark masses, where the latter have
been calculated without the inclusion of disconnected di-
agrams. This is an extension of our previous calculation
of the proton isovector unpolarized PDF [62]. Here we
utilize both methods for calculation, which can help to
understand the significance of the different systematics
within them. In particular, for the quasi-PDF method,
we adopt the hybrid scheme with LRR and work at
NLO with leading-logarithmic (LL) resummation that
accounts for PDF evolution, which gives us a reliable
estimate of the sysmtematic uncertainty in the small-x
region [61].

The rest of the paper is organized as follows. First,
in Sec. II, we review the setup of our lattice calculation.
Then in Sec. III we describe our analysis strategy to ex-
tract the ground-state matrix elements, which includes
an estimate for the tensor charge. In Sec. IV we use the
ground-state matrix elements to extract the lowest few
Mellin moments from the leading-twist OPE. We then
move on to the determination of the transversity PDF
with the pseudo-PDF method in Sec. V and the quasi-
PDF method in Sec. VI. And, finally, we conclude in
Sec. VII.

II. LATTICE DETAILS

Our setup is nearly identical to that used in our pre-
vious work on the unpolarized proton PDF [62], and is
also similar to our work on the pion valence PDF [63, 64].
There are only two differences here: i) the specific cor-
relators needed for the transversity PDF, which were, in
fact, computed at the same time as the correlators needed
for the unpolarized PDF; and ii) an increase in statistics
for the Pz = 2π6

L , tsep = 12a data. Therefore, we only
repeat the most pertinent details here.

The calculations are performed on a 643 × 64 ensem-
ble of Nf = 2 + 1 highly-improved staggered quarks
(HISQ) [65] with masses tuned to their physical values
and a lattice spacing of a = 0.076 fm, which was gener-
ated by the HotQCD collaboration [66]. For the valence
quarks, the tree-level tadpole-improved Wilson-clover ac-
tion is used with physical quark masses and a single it-
eration of HYP smearing [67].

In order to build a nucleon operator with good overlap
onto a highly-boosted nucleon state, the quark fields are
smeared using Coulomb-gauge momentum smearing [68]
as described in App. A of Ref. [69]. Within this method,
for a given desired momentum Pz ≡ 2πnz

L of the nucleon,

the momentum smearing assumes a quark boost of 2πkz

L ,

Ensembles mπ Ncfg nz kz tsep/a (#ex,#sl)
a, Lt × L3

s (GeV)
a = 0.076 fm 0.14 350 0 0 6 (1, 16)
64× 643 0 0 8,10 (1, 32)

0 0 12 (2, 64)
1 0 6,8,10,12 (1, 32)
4 2 6 (1, 32)
4 2 8,10,12 (4, 128)
6 3 6 (1, 20)
6 3 8 (4, 100)
6 3 10 (5, 140)
6 3 12 (13, 416)*

TABLE I: The more important details on the ensemble and
the statistics gathered for our calculation. The integer mo-
mentum nz of the nucleon and the corresponding integer
boost momentum kz of the quarks are given. The sink-source
separations used are given by tsep. And, finally, the number
of samples used for the exact and sloppy solves is given by
#ex and #sl, respectively. The asterisk indicates where extra
samples were generated as compared to our previous work in
Ref. [62].

where nz, kz ∈ Z. For an optimal signal, kz should be
about half of nz.
We use the Qlua software suite [70] for calculating the

quark propagators and subsquently constructing the final
correlators. The needed inversions are performed using
the multigrid solver in QUDA [71, 72] and utilize all-
mode averaging (AMA) [73] to reduce the total compu-
tational cost. The residual used in our solver is 10−10

and 10−4 for exact and sloppy solves, respectively.
Some of the more important details, including the total

statistics achieved, can be found in Tab. I.

A. Correlation functions

We use the standard interpolating operator for the nu-
cleon, given by

Nα(x, t) = εabcuaα(x, t)(ub(x, t)
TCγ5dc(x, t)), (1)

where C = γtγy is the charge-conjugation matrix. These
are then used to construct the two-point correlation func-
tions as follows

C2pt
P (p⃗, tsep; x⃗, t0) =∑

y⃗

e−ip⃗·(y⃗−x⃗)P2pt
αβ ⟨N (s)

α (y⃗, tsep + t0)N
(s′)

β (x⃗, t0)⟩ ,

(2)

where the superscripts on the nucleon operators spec-
ify whether the quarks are smeared (s = S) or not
(s = P ), and P2pt is a projection operator. As described
in Ref. [62], we always use smeared quarks at the source
time, but consider both smeared and unsmeared quarks
at the sink time, which helps to more reliably extract the
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spectrum by looking for agreement between the indepen-
dent analysis of both correlators.

The three-point correlators computed are given by

C3pt
P,Γ,f (p⃗, q⃗, tsep, tins, z; x⃗, t0) =∑

y⃗,z⃗0

e−ip⃗·(y⃗−x⃗)e−iq⃗·(x⃗−z⃗0)P3pt
αβ

× ⟨Nα(y⃗, tsep + t0)Of
Γ(z⃗0 + zẑ, tins + t0)Nβ(x⃗, t0)⟩ ,

(3)

where P3pt is a projection operator, p⃗ is the momentum
of the sink nucleon, q⃗ is the momentum transfer, and the
inserted operator is

Of
Γ(z⃗0 + zẑ, tins + t0) = ψ

f
(z⃗0, tins + t0)Γ

×W (z⃗0, tins + t0; z⃗0 + zẑ, tins + t0)ψ
f (z⃗0 + zẑ, tins + t0),

(4)

where Γ is a product of gamma matrices, ψf (z⃗, t) is a
quark field of flavor f , and W is a straight Wilson line
of length z connecting the quark fields. For the three-
point functions, we only consider nucleon operators built
from smeared quarks. The Wilson line is formed from
products of the HYP-smeared gauge links and is needed
to construct a gauge-invariant operator. In this work,
we consider the light quark flavors f = u, d separately,
allowing us to access the isovector (u − d) and isoscalar
(u + d) combinations. Note, however, that all discon-
nected contributions are ignored, leading to uncontrolled
errors due to their neglect in the isoscalar combination.
This approximation is expected to be reasonable given
that estimates from PNDME for the disconnected con-
tributions to the tensor charge have indicated they are
smaller than the statistical error on the connected con-
tributions [74, 75]. In what follows, we only consider zero
momentum transfer q⃗ = 0 and the sink momenta are al-
ways in the z-direction p⃗ = 2πnz

L ẑ ≡ Pz ẑ. We use four dif-
ferent values for the sink momenta nz ∈ {0, 1, 4, 6} which
in physical units corresponds to Pz = {0, 0.25, 1.02, 1.53}
GeV. The statistics gathered and quark boosts used for
each nz are given in Tab. I.

In this work, we are interested in the tensor charge
and the transversity PDF, which can be accessed with
Γ ∝ σzj (with j being either x or y) and

P3pt =
1

2
(1 + γt)(1− iγ5ŝ · γ⃗) (5)

which projects the nucleon to positive parity and its spin
to be aligned along the direction given by ŝ. Here we use
Γ = −iσzy = −iγzγy and ŝ = x̂. Throughout the remain-
der of the text, we use δ to denote the specific operator
and polarization used, which is motivated by the stan-
dard usage of δq(x) in the literature for the transversity
PDF.

In order to guarantee the cancellation of amplitudes
that appear in the spectral decompositions of the three-
and two-point functions, we set P2pt = P3pt ≡ P, and
we will denote this in the two-point functions by C2pt

Sx
.

III. GROUND-STATE MATRIX ELEMENTS

In this section, we extract the ground-state bare matrix
elements from the three-point correlation fucntions. Our
analysis strategy is nearly identical to that used in our
previous work of Ref. [62], and we repeat the most im-
portant details here for convenience. The only difference
in the strategy is the choice in our preferred fit ranges.
In this work, the quality of our data has increased, giving
us more confidence in our fits, and therefore, we end up
excluding less time insertions from our final fits.
Our approach first extracts the spectrum and ratios

of amplitudes from the two-point correlation functions
in order to use these as priors on the parameters shared
in our fits to the ratio of three-point to two-point func-
tions. Although the two-point correlation functions differ
slightly from those used in our previous work in Ref. [62],
because P2pt is different, we do not include any discus-
sions here, as the analysis strategy is identical and the
results only change by a slight increase in the error. The
increase in error can be understood from the fact that
the change in P2pt amounts to only using a single spin
polarization, as opposed to averaging over both spin po-
larizations as done previously.

A. Analysis strategy

We follow the standard approach for extracting the
bare matrix elements, which begins by forming an ap-
propriate ratio of the three-point to two-point correlation
functions given by

Rf
δ (Pz, tsep, tins, z) ≡

C3pt
δ,f (p⃗ = Pz ẑ, q⃗ = 0, tsep, tins, z)

C2pt
Sx

(p⃗, tsep)
.

(6)
The main reason for this choice is that it can be shown
that

lim
tins,tsep→∞

Rf
δ (Pz, tsep, tins, z) = hfδ;0,0(z, Pz), (7)

where hfδ;0,0(z, Pz) is the desired bare ground-state ma-
trix element. Since the values of tsep considered here
are not likely in the asymptotic region, we include the
effects from the lowest N states by substituting the spec-
tral decompositions of the three- and two-point functions
truncated at the Nth state. After some algebra, we find

Rf
δ (Pz, tsep, tins, z;N) =∑N−1
m,n=0 h

′f
δ;m,n

∏m
l,k,r=1 e

−∆l,l−1tsepe(∆k,k−1−∆r,r−1)tins

1 +
∑N−1

i=1 ri
∏i

j=1 e
−∆j,j−1tsep

,

(8)

where ∆i,j ≡ Ei − Ej , ri ≡ |A(i)
α (Pz)|2/|A(0)

α (Pz)|2,
A

(n)
α (Pz) ≡ ⟨Ω|NβPβα |n, Pz⟩ (|Ω⟩ is the vacuum state
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FIG. 1: The Wilson-line length dependence of the (upper) real and (lower) imaginary parts of the isovector ground-state bare
matrix elements from two-state and summation fits with nexc = 2, 3 for the three nonzero values of momentum considered (one
for each column). The results shown are averaged with the negative z fits.
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FIG. 2: The same as Fig. 1, but for the isoscalar matrix elements.

and |n, Pz⟩ is the n-th nucleon state with momentum
Pz), and

h′fδ;m,n ≡
A

(m)
α (Pz)A

(n)
α (Pz)

∗hfδ;m,n(z, Pz)

A
(0)
α (Pz)A

(0)
α (Pz)∗

. (9)

The parameters h′fδ;m,n depend on z and Pz, but this
dependence is suppressed to save space. For conve-
nience, we typically suppress the indices on the matrix
elements when referring to the ground state matrix el-

ement (i.e. hfδ (z, Pz) ≡ hfδ;0,0(z, Pz)). As the excited-
state matrix elements are never used, this should not
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cause any confusion. We fit the ratio of data in Eq. (6)

to Rf
δ (Pz, tsep, tins, z;N), where h′fδ;m,n, ∆i,j , and ri are

the fit parameters. The parameters ∆i,j and ri are pri-
ored using the fit results from the two-point functions
(see Ref. [62] for details). In this work, we only consider
N = 1, 2, as our limited data tends to lead to unreliable
fits when N > 2.

In order to reduce the effects from unaccounted for
excited-states as much as possible, we remove some of
the data points nearest the sink and source times. We
do this in a symmetric way, i.e. for each tins not included
in the fit, we also do not include tsep − tins − 1. We
define nexc to be the number of insertion times removed
on each side of the middle point for each tsep. Therefore,
for each tsep, the insertion times included in the fit are
tins ∈ [nexc+1, tsep−nexc−1]. However, making nexc too
large can leave too little data left, and therefore we only
consider nexc ≤ 3. As described in our previous work of
Ref. [62], the two-point function fits show contributions
from three states for tsep ≤ nexc + 1 requiring the use
of an effective value for the prior on the gap ∆1,0 that
takes into account effects from higher states. The specific
value used for the prior on the gap comes from the two-
state fit to the two-point function with the lower fit range
tmin = nexc + 1.

As an additional consistency check on our fit results,
we also make use of the summation method, which in-

volves first summing Rf
δ (Pz, tsep, tins, z) over the subset

tins ∈ [nexc + 1, tsep − nexc − 1] for each tsep

Sf
δ (Pz, tsep, z;nexc) ≡

tsep−nexc−1∑
tins=nexc+1

Rf
δ (Pz, tsep, tins, z),

(10)
which reduces the leading contamination from excited
states. The bare ground-state matrix element can then
be extracted from a linear fit to the sum as

Sf
δ (Pz, tsep, z;nexc) = B0 + tseph

f
δ (z, Pz). (11)

In Figs. 1 and 2, we show comparisons of the two-state
and summation fit results for the isovector and isoscalar
combinations, respectively, as a function of the Wilson
line length for both nexc = 2 and 3. We see generally
good agreement across these different fits, and, with the
better data quality as compared to the unpolarized case,
we choose our preferred fit as the two-state fit to the ratio
Eq. (6) with nexc = 2.

Several representative fits, all using our preferred fit
strategy, are shown in App. B. There we include the fits
to the zero-momentum local matrix elements, relevant
for the tensor charge, in Fig. 18 for the isovector and
isoscalar combinations. We also include various fits to
the non-local matrix elements, relevant for information
on the PDFs, in Figs. 19 and 20 for the isovector combi-
nation and in Figs. 21 and 22 for the isoscalar combina-
tion.

gu−d
T guT gdT

This work 1.05(2) 0.84(2) -0.21(1)
NME [77] 0.95(5)(2)

RBC/UKQCD [78] 1.04(5)
Mainz [79, 80] 0.965(38)(1341) 0.77(4)(6) -0.19(4)(6)
LHPC [81] 0.972(41)
JLQCD [82] 1.08(3)(3)(9) 0.85(3)(2)(7) -0.24(2)(0)(2)
LHPC [83] 1.038(11)(12)

RBC/UKQCD [84] 0.9(2)

TABLE II: Comparison of our extracted tensor charges with
those in the FLAG review 2021 [76] with Nf = 2 + 1. The
results are ordered by year.

B. Tensor charge gT

Although the focus of this work is based on the non-
local matrix elements, we first turn our attention to the
local ones which give us access to the nucleon tensor
charge gT . The bare matrix elements must be renormal-
ized in a standard scheme (like MS) in order to make com-
parisons with phenomenological results and other lattice
determinations. The matrix elements are multiplicatively
renormalizable, and we first determine the ratio of renor-
malization constants ZT /ZV in the RI-MOM scheme
which is then converted to MS at the scale µ = 2 GeV (see
App. A for details). Then, using the ratio of bare charges
gbareT /gbareV along with the expectation of ZV g

bare
V = 1,

the renormalized tensor charge gT = ZT g
bare
T can be de-

termined. Using our estimate for ZT /ZV , we find

gu−d
T = 1.05(2), MS(µ = 2 GeV),

gu+d
T = 0.64(2), MS(µ = 2 GeV).

(12)

In Tab. II, we show a comparison of our results to the
other Nf = 2 + 1 results given in the FLAG review
2021 [76].

IV. MELLIN MOMENTS FROM THE
LEADING-TWIST OPE

We now move on to the extraction of the lowest few
Mellin moments using the leading-twist OPE approxi-
mation. Here we avoid the need for the renormalization
factors, which depend on the Wilson-line length z and the
lattice spacing a, by forming the renormalization-group
invariant ratio [85]

Mf/f ′

δ (λ, z2;P 0
z ) =

hfδ (z, Pz)

hf
′

δ (z, P 0
z )

/ hfδ (0, Pz)

hf
′

δ (0, P 0
z )
, (13)

where λ ≡ zPz is known as the Ioffe time. In the liter-
ature, this ratio is referred to as the Ioffe time pseudo-
distribution (pseudo-ITD). In order to cancel the renor-
malization factors, the z = 0 matrix elements are not
necessary, but this choice is favorable in that it enforces
a normalization and cancels correlations. In this work,
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we only consider the case with P 0
z = 0, commonly re-

ferred to as the reduced pseudo-ITD [43, 86–91]. Addi-
tionally, since there are no gluons involved in the case
of the transversity distributions, the leading-twist OPE
expansion of the pseudo-ITD does not depend on the fla-
vor combination f ′, even if f ̸= f ′, and we, therefore,
opt to omit the f ′ from our notation in order to not be
overly cumbersome. In what follows, when extracting the
isovector flavor combination, f = f ′ = u− d, and for the
isoscalar flavor combination, f = u+ d and f ′ = u− d.
Then, using the leading-twist OPE approximation, we

can write down the reduced pseudo-ITD as an expansion
in Mellin moments

Mf
δ (λ, z

2, P 0
z = 0) =

∑
n=0

Cδ
n(µ

2z2)

Cδ
0(µ

2z2)

(−iλ)n
n!

⟨xn⟩fδ (µ)
⟨x0⟩fδ (µ)

+O(Λ2
QCDz

2),

(14)

where Cδ
n(µ

2z2) are the Wilson coefficients for the
transversity computed in the ratio scheme up to NLO
in the strong coupling αs(µ), which at fixed order are
given by [49, 55]

Cδ
n,NLO(µ

2z2) = 1 +
αs(µ)CF

2π

[
2 ln

(
µ2z2e2γE+1

4

) n+1∑
j=2

1

j

− 2

(
n∑

j=1

1

j

)2

− 2

n∑
j=1

1

j2

]
,

(15)

CF = 4/3, and ⟨xn⟩fδ (µ) is the nth Mellin moment of the
transversity PDF of flavor f defined at the factorization
scale µ, i.e.

⟨xn⟩fδ (µ) =
∫ 1

−1

dxxnδqf (x, µ), (16)

where δqf (x, µ) is the transversity PDF of a quark with
flavor f for x ≥ 0 and of its antiquark for x < 0. Esti-
mates for the strong coupling itself are determined from
Ref. [92], and we exclusively work at the scale µ = 2
GeV, resulting in αs(µ = 2 GeV) = 0.2930. Further,
we also consider the effects from target mass corrections
(TMCs), which can be incorporated with the following
substitution

⟨xn⟩fδ → ⟨xn⟩fδ
n/2∑
k=0

(n− k)!

k!(n− 2k)!

(
m2

N

4P 2
z

)k

. (17)

As the Wilson coefficients are all real, it is clear from
Eq. (14) that the real and imaginary parts of the reduced

pseudo-ITD, Mf
δ (λ, z

2, 0), can be written solely in terms
of the even and odd moments, respectively. Therefore,
we choose to separately fit the real and imaginary parts

of the reduced pseudo-ITD to

ReMf
δ (λ, z

2, P 0
z = 0) =

⌊Nmax/2⌋∑
n=0

Cδ
2n(µ

2z2)

Cδ
0(µ

2z2)

(−iλ)2n
(2n)!

⟨x2n⟩′fδ ,

ImMf
δ (λ, z

2, P 0
z = 0) =

⌈Nmax/2⌉∑
n=1

Cδ
2n−1(µ

2z2)

Cδ
0(µ

2z2)

(−iλ)2n−1

(2n− 1)!
⟨x2n−1⟩′fδ ,

(18)

respectively, where the reduced moments ⟨xn⟩′fδ ≡
⟨xn⟩fδ / ⟨x0⟩

f
δ with n > 0 are the fit parameters. The

n = 0 reduced moment is identically one, which is en-

forced explicitly in the fit. Additionally, gfT ≡ ⟨x0⟩fδ ,
which implies that the reduced moments are the original
moments in units of the tensor charge, and we express all
results as such.
We start the analysis as before in Ref. [62] by first

assessing the validity of the leading-twist approxima-
tion (i.e. how important are the O(Λ2

QCDz
2) correc-

tions which are ignored). To this end, we perform fits
to Eq. (18) at only a single value for z2 (referred to
as a fixed-z2 analysis) and look for any dependence of
the extracted moments on the specific value of z2. Ob-
serving little or no dependence on z2 would suggest that
the higher-twist contributions are negligible within our
statistics and that the leading-twist approximation is
valid.
As z increases, the higher-moment terms in Eq. (14)

begin to become important. We can determine when
these higher-moment terms are expected to be non-
negligible by using the leading-twist OPE with the mo-
ments extracted from the global analysis of JAM3D-
22 [28]. We found that including two n ̸= 0 moments
in the OPE for both the real and imaginary parts is nec-
essary for z > 4a ∼ 0.304 fm, and that a third n ̸= 0 mo-
ment becomes necessary for z > 8a ∼ 0.608 fm. However,
using only one value of z2 allows for up to two moments
to be fit to both the real and imaginary data, as the num-
ber of non-zero Pz considered is three. Therefore, for the
fixed-z2 analysis, the largest value of z used is z = 8a
and we use two moments in the fits when z > 4a.
Our results for the fixed-z2 analysis for both the isovec-

tor and isoscalar combinations are show in Fig. 3. All re-
sults shown always include TMCs. Initially, we only con-
sidered the LO and fixed-order NLO Wilson coefficients
in the analysis. However, the fixed-order NLO results
show significant z dependence for ⟨x⟩ at small values of
z. This is not completely unexpected, as discretization
errors [93] and large logs can be significant for small val-
ues of z, see Appendix B in Ref. [64]. Note, however, in
that work, the analysis was done for the pion PDF, where
the large logs become important at somewhat smaller z
compared to the range of z where we see strong depen-
dence here. To better understand the effects of large logs
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FIG. 3: Results for the lowest four Mellin moments of the
(upper) isovector and (lower) isoscalar PDF as a function of
z from fits of the reduced pseudo-ITD at fixed z with nz ∈
[1, 4, 6] to the leading-twist OPE using LO, fixed-order NLO,
and NLO+RGR Wilson coefficients evaluated at µ = 2 GeV,
all of which include TMCs. Only the first two moments are
extracted for z ≤ 4a. The horizontal dashed lines and bands
correspond to the central values and errors, respectively, of
the moments extracted from the global analysis of JAM3D-
22 [28] defined at the scale Q = 2 GeV.

for the transversity PDF of the proton, we also use the
NLO Wilson coefficients combined with renormalization
group resummation (RGR) at next-to-leading logarithm
(NLL) accuracy, given by

Cδ
n,NLO+RGR(µ

2z2) = Cδ
n,NLO(µ

2
0z

2)

× e−
γ
(1)
n ln

as(µ)
as(µ0)

β0
−

(−β1γ
(1)
n +β0γ

(2)
n )ln

β0+β1as(µ)
β0+β1as(µ0)

β0β1 ,

(19)

where as = αs/(2π), βn is the nth order coefficient of

the β function, and γ
(1)
n and γ

(2)
n are the anomalous

dimensions of the nth moments [94, 95]. The RGR
evolve the running coupling αs from the physical scale
µ0 = 2e−γE/z to the factorization scale µ. As can be
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FIG. 4: Results for the lowest four Mellin moments of the (up-
per) isovector and (lower) isoscalar PDF from uncorrelated
fits of the reduced pseudo-ITD to the leading-twist OPE as a
function of zmax, with z ∈ [zmin, zmax] and nz ∈ [1, 4, 6]. The
results use the fixed-order NLO Wilson coefficients evaluated
at µ = 2 GeV and include TMCs. Only the first two moments
are considered for zmax ≤ 4a. The next two moments, ⟨x3⟩
and ⟨x4⟩ are included for 4a < zmax ≤ 8a. And, two more
moments, ⟨x5⟩ and ⟨x6⟩ are included for zmax > 8a. The hor-
izontal dashed lines are the same as in Fig. 3.

seen from Fig. 3, the use of the NLO+RGR Wilson coef-
ficients produces results mostly consistent with the NLO
case at small z. This suggests the significant z depen-
dence at small z is mainly a discretization effect rather
than due to large logs.

Next, we move on to including a range of values of z
in our fits, considering various ranges z ∈ [zmin, zmax].
With the extra data, we can include an extra moment
in the fits for z > 8a. The results for both the isovector
and isoscalar moments are shown in Fig. 4. Given the
small effect from the RGR which also becomes unstable
when as(µ0) runs close to the Landau pole, we opt to use
the fixed-order NLO Wilson coefficients, and also always
include TMCs for the final results. There is some depen-
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FIG. 5: The (left) real and (right) imaginary parts of the (upper) isovector and (lower) isoscalar reduced pseudo-ITD for the
three momentum used in this work. The data come from our preferred fit strategy described in Sec. III A. The fit ranges
used are z ∈ [3a, 10a]. The shaded bands correspond to the fits using the leading-twist OPE with fixed-order NLO Wilson
coefficients and TMCs evaluated at µ = 2 GeV and including three moments in both the real and imaginary parts.
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GeV. Two zmax are considered, as well as Wilson coefficients at LO and fixed-order NLO.
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dence on the choice of zmin, as expected from the fixed-z2

analysis results, however it is rather mild. Our preferred
fit range is z ∈ [3a, 10a], which removes most of the ef-
fects from discretization errors and large logs at small z
and keeps zmax small enough to likely keep higher-twist
contributions negligible. The results of these preferred
fits are shown in Fig. 5. Finally, we show a summary of
the results from different strategies and their comparison
to JAM3D-22 [28] in Fig. 6.

It is interesting to note the rather good agreement with
the global analysis from JAM3D-22, especially for the
lowest two moments, whereas we found tension for the
lowest non-trivial moment in the unpolarized case [62].
However, comparing the matrix elements presented here
versus those from the unpolarized ones, there is some
hint of smaller excited-state contamination in the matrix
elements of this work, which may be responsible for the
better agreement.

V. PDF FROM LEADING-TWIST OPE: DNN
RECONSTRUCTION

A. Method

It has been shown that we can extract the Mellin mo-
ments of transversity PDFs by applying the OPE formula
to the ratio-scheme renormalized matrix elements, model
independently. Limited by the finite λ = zPz, the lattice
data is only sensitive to the first few moments while the
higher ones are factorially suppressed. As a result, to
predict the x dependence of the PDFs, one needs to in-
troduce additional prior knowledge or a reasonable choice
of model. Commonly used models are usually of the form

q(x) = Axα(1− x)β(1 + sub-leading terms), (20)

which is inspired by the end-point behavior of the PDFs.
However, the sub-leading terms may play an important
role, particularly in moderate regions of x, and one may
find reasonable models for the sub-leading terms that give
acceptable fits to the data. But, unless the data is pre-
cise, the model could introduce an uncontrolled bias. The
use of a deep neural network (DNN) is a flexible way to
maximally avoid any model bias — but cannot remove
the bias entirely, as a nueral network is still a model —
which is capable of approximating any functional form
given a complicated enough network structure. As pro-
posed in Ref. [62], we parametrize the PDFs by,

q(x;α, β,θ) ≡ Axα(1− x)β [1 + ϵ(x) sin(fDNN(x,θ))],
(21)

where fDNN(x,θ) is a DNN multistep iterative function,
constructed layer by layer. The initial layer consists of
a single node, denoted as a11, which represents the input
variable x. Subsequently, in the hidden layers, a linear
transformation is performed using the equation:

z
(l)
i = b

(l)
i +

∑
j

W
(l)
ij a

(l−1)
j . (22)

Here, z
(l)
i is the intermediate result obtained by adding

the bias term b
(l)
i to the sum of the weighted inputs from

the previous layer, represented by W
(l)
ij a

(l−1)
j . Following

this linear transformation, a nonlinear activation func-

tion σ(l)(z
(l)
i ) is applied, and the resulting output serves

as the input to the next layer, represented by a
(l)
i . We

specifically employed the exponential linear unit activa-
tion function σelu(z) = θ(−z)(ez − 1) + θ(z)z. Lastly,
the final layer generates the output fDNN(x,θ), which is
subsequently utilized to evaluate q(x;α, β, θ). The lower
indices i = 1, ..., n(l) are used to identify specific nodes
within the lth layer, where n(l) denotes the number of
nodes in the lth layer. The upper indices, enclosed in
parentheses, l = 1, ..., N , are employed to indicate the
individual layers, where N corresponds to the number of
layers, representing the depth of the DNN. The parame-

ters of the DNN, namely the biases b
(l)
i and weightsW

(l)
ij ,

represented by θ, are subject to optimization (training)
by minimizing the loss function defined as

J(θ) ≡ η

2
θ · θ +

1

2
χ2(θ, α, β, ...). (23)

The first term in the loss function serves the purpose of
preventing overfitting and ensuring that the function rep-
resented by the DNN remains well-behaved and smooth.
The details of the χ2 function can be found in the ap-
pendix of Ref. [62]. Due to the limited statistics, a sim-
ple network structure such as {1, 16, 16, 1} (indicating
the number of nodes in each layer) is sufficient to pro-
vide a smooth approximation of the sub-leading contri-
bution. In practice, we experimented with different val-
ues of η ranging from 100 to 10−2 and considered net-
work structures of sizes {1, 16, 16, 1}, {1, 16, 16, 16, 1},
and {1, 32, 32, 1}. However, the results remained con-
sistent across these variations. Therefore, we opted for
η = 0.1 and selected a DNN structure with four lay-
ers, including the input and output layers, specified as
{1, 16, 16, 1}.

To balance the model bias and data precision, the con-
tribution of the DNN is limited by |ϵ(x) sin(fDNN)| ≲
ϵ(x), which can be fully removed by setting ϵ(x) = 0. It is
also possible to control the size of the DNN parametrized
sub-leading contribution at each specific x. However, in
this work, given the limited statistics, we simply fix ϵ(x)
to be a small constant, e.g. 0.1.

B. DNN represented PDF

To train the PDFs, we re-write the short distance fac-
torization as,

h̃fδ (z, Pz, µ) =

∫ 1

−1

dα Cδ(α, µ2z2)

∫ 1

−1

dy e−iyαλδqf (y, µ),

(24)

where the renormalized matrix elements h̃fδ (z, Pz, µ) are

directly connected to the x-dependent PDFs δqf (x, µ),
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FIG. 7: The DNN training results using the (left) isovector and (right) isoscalar reduced pseudo-ITD matrix elements in the
range z ∈ [2a, 10a] for the (upper) real part and (lower) imaginary part (lower panel) are shown. The results using ϵ = 0 and
ϵ = 0.1 are shown as the solid and dotted curves, respectively.
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FIG. 8: The DNN represented PDFs using the matrix ele-
ments in the range z ∈ [2a, 10a] for the (upper) isovector and
(lower) isoscalar cases are shown. The results with ϵ = 0 and
ϵ = 0.1 are shown as the red and blue bands, respectively.

and Cδ(α, µ2z2) can be determined from the Wilson co-
efficients Cδ

n(µ
2z2) [46, 95]. In this section we use the

NLO fixed-order Wilson coefficients. In our case, the
real and imaginary parts of the reduced pseudo-ITD

M
f
f′

δ (λ, z2, P 0
z = 0) are related to δqf,−(x) and δqf,+(x),
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FIG. 9: The DNN represented PDFs using the matrix ele-
ments in the range z ∈ [2a, zmax] for the (upper) isovector
and (lower) isoscalar cases are shown. For comparison, we
also show the global analysis results from JAM3D-22 [28].

defined as

δqf,−(x) ≡ δqf (x)− δqf̄ (x),

δqf,+(x) ≡ δqf (x) + δqf̄ (x),
(25)
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in the region x ∈ [0, 1] and where δqf (x) and δqf̄ (x)
are the quark and anti-quark transversity distributions
of flavor f , respectively. However, as observed in the
literature [54, 55], with the current lattice accuracy, the
anti-quark distributions are mostly consistent with zero.
We therefore ignore the anti-quark contribution and fit
the real and imaginary parts together to δqf (x;α, β,θ) =
δqf,−(x) = δqf,+(x).
We use the matrix elements in the range z ∈ [2a, zmax]

for the parameter training, skipping z = a in order to
avoid the most serious discretization effects. In Fig. 7,
we show the fit results for zmax = 10a with ϵ = 0 and
ϵ = 0.1 which both lead to a good description of the
data. The corresponding PDFs are shown in Fig. 8, and
the results from ϵ = 0.1 exhibit slightly larger errors but
mostly overlap with the ϵ = 0 case. It is evident that
the effects of the DNN were minimal which is likely a
result of the limited statistics. We anticipate the DNN
playing a more significant role when more precise data
becomes available. In what follows, we use the results
with ϵ = 0.1.
The short distance factorization could suffer from

power corrections at large values of z2. To check this, we
vary the zmax used to train the PDFs to investigate such
systematic errors. As shown in Fig. 9, by slightly increas-
ing zmax, the results do not change significantly within
the large errors, suggesting that higher-twist effects are
less important compared to the statistics of our data. For
comparison, we also show the most recent global analy-
sis results from JAM3D-22 [28], and overall agreement is
observed.

VI. x-SPACE MATCHING

We now move on to our final method for extracting in-
formation on the transversity PDF. This method utilizes
LaMET to match the quasi-PDF — determined from
the Fourier transform of hybrid-renormalized matrix ele-
ments — to the light-cone PDF.

A. Hybrid renormalization

It is well known that the bare matrix elements can
be multiplicatively renormalized by removing the linear
divergence originating from the Wilson line self energy
and the overall logarithmic divergence

hfδ (z, Pz) = ZT (a)e
−δm(a)ze−m̄0zh̃fδ (z, Pz), (26)

where h̃fδ is the renormalized matrix element, δm(a) con-
tains the Wilson-line self-energy linear UV divergences,
ZT (a) contains the logarithmic UV divergences, and m̄0

is used to fix the scheme dependence present in δm(a).
The Wilson-line self-energy divergence term δm(a) can
be extracted from physical matrix elements, like those
involving Wilson loops. Here we use the value aδm(a) =

0.15 0.20 0.25 0.30 0.35 0.40
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FIG. 10: The m̄0 determined using NLO+LRR and
NLO+LRR+RGR Wilson coefficients are shown. The bands
come from the scale variation.

0.1597(16) determined from the static quark-antiquark
potential taken from Refs [96–100]. The scheme depen-
dence in δm(a) can be attributed to a renormalon ambi-
guity, but can be fixed to a particular scheme by appro-
priate determiation of m̄0 [61, 63], and here we choose
the MS scheme. Our strategy for determining m̄0 is to

compare the Pz = 0 bare matrix elements hfδ (z, Pz = 0)

to the Wilson coefficient Cδ
0(µ

2z2) computed in the MS
scheme

hfδ (z, Pz = 0) = ZT (a)e
−δm(a)ze−m̄0zCδ

0(µ
2z2). (27)

In order to remove ZT (a) and hopefully cancel some of
the discretization effects, we next divide (27) by itself
with z shifted by one unit of the lattice spacing. Then,
after rearranging, we arrive at

eaδm(a) hfδ (z, Pz = 0, a)

hfδ (z − a, Pz = 0, a)
= e−am̄0

Cδ
0(µ

2z2)

Cδ
0(µ

2(z − a)2)
.

(28)
Before proceeding, we must first discuss the specifics of
the Wilson coefficents used.
The renormalon ambiguity, by definition, is an artifact

that arises from the summation prescription of the per-
turbative series in the QCD coupling αs. Therefore, we
use the Wilson coefficients after leading renormalon re-
summation (LRR) given in Ref. [61] under the large-β0
approximation by

Cδ
0,LRR(αs(µ),z

2µ2) =

∫ ∞

0,PV

dωe
− 4πω

β0αs(µ)
2CF

β0

1

ω

×
[
Γ(1− ω)e

5
3ω(z2µ2/4)ω

(1− 2ω)Γ(1 + ω)
− 1

]
.

(29)

To be consistent with the known fixed-order Wilson co-
efficients at NLO, in practice, we use

Cδ′
0 (αs(µ), z

2µ2) = Cδ
0,LRR(αs(µ), z

2µ2)

+
[
Cδ

0,NLO(αs(µ), z
2µ2)− Cδ

0,LRR,NLO(αs(µ), z
2µ2)

]
(30)
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FIG. 11: The ratio of Pz = 0 matrix elements (black points)
defined in Eq. (28) are shown. The bands are infered from
the NLO+LRR and NLO+LRR+RGR Wilson coefficients re-
spectively with scale variation.

where the Cδ
0,LRR,NLO is the NLO expansion of Cδ

0,LRR
and the fixed-order NLO Wilson coefficient is given by

Cδ
0,NLO(αs(µ), z

2µ2) = 1 +
αs(µ)

2π
CF

[
2 ln

(
µ2z2e2γE

4

)
+ 2

]
.

(31)

In addition, we can also resum the large logarithms
ln
(
µ2z2e2γE/4

)
by the renormalization group resumma-

tion (RGR) [101]. Using these coefficients, the m̄0 de-
termined using Eq. (28) are shown in Fig. 10 as a func-
tion of z. The bands of NLO+LRR come from the scale
variation of µ in the Wilson coefficients by a factor of√
2. When using RGR, the running coupling is evolved

from the physical scale µ0 = 2ke−γE/z to the factoriza-

tion scale µ [48, 101]. And we vary k ∈ [1/
√
2, 1,

√
2]

to estimate the scale uncertainty. It can be observed
that the scale uncertainties in the RGR case are smaller
at small z, benefiting from the resummation, while they
become larger at large z as they become close to the
Landau pole. In addition, plateaus can be observed af-
ter z ≥ 3a ∼ 0.228 fm when the discretization effects
become negligible, though the uncertainty bands for the
NLO+LRR+RGR case are larger with the running cou-
pling when z > 0.25 fm. To avoid discretization effects
at small z and the Landau pole at large z, we choose
values at z = 3a which give m̄0 = 28(2) MeV and 129(2)
MeV for NLO+LRR and NLO+LRR+RGR cases, re-
spectively. In Fig. 11, we show the data points defined
on the left-hand side of Eq. (28) using the computed ma-
trix elements and δm(a), along with the ratios defined
on the right-hand side of Eq. (28) using m̄0 chosen above
and Wilson coefficients at NLO+LRR (orange bands)
and NLO+LRR+RGR (red bands).

The hybrid scheme renormalized matrix elements are

given by

h̃fδ (λ, λs, Pz, µ) = θ(zs − z)
hfδ (z, Pz, a)

hfδ (z, 0, a)

+ θ(z − zs)
hfδ (z, Pz, a)

hfδ (zs, 0, a)
e(δm(a)+m̄0)(z−zs),

(32)

with zs = 3a. In Fig. 12 we show the hybrid renormal-
ized matrix elements for the isovector case (left panels)
and isoscalar case (right panels) for momenta nz = 4, 6.
It can be seen that the large momentum matrix elements
show a slow Pz evolution and a good scaling in λ within
the statistical errors, suggesting we have good conver-
gence in momentum.

B. Extrapolation to large λ

Due to the finite extent of the lattice, one can only
calculate the matrix elements up to some maximum
λmax ≡ zmaxP

max
z . Further, the signal deteriorates as λ is

increased. This poses a problem, as the matrix elements
need to be Fourier transformed to obtain the quasi-PDF,
and truncating the integral will lead to unphysical oscil-
lations in the resulting quasi-PDF. Therefore, we choose
to perform an extrapolation of the data to infinity be-
fore performing the Fourier transform. In practice, we
estimate the Fourier transform with a discrete sum up
to some value λL = zLPz at which point an integral of
the extrapolated function takes over. There are a few
considerations when deciding upon an appropriate value
for λL. In this work, we choose a value in the region
where either the signal is no longer reliable or the values
of the matrix elements are nearly consistent with zero.
As in our previous work in Ref. [62], the extrapolation
itself is done by performing a fit in this region using the
exponential decay model

Ae−meffλ/Pz

|λ|d , (33)

where the fit parameters are constrained by meff > 0.1
GeV, A > 0, and d > 0. Using this constraint on meff

helps to ensure the extrapolation falls off at a reasonable
rate and does not significantly change the results in the
regions of x for which we trust the LaMET procedure. A
detailed derivation which motivates the use of this model
can be found in App. B of Ref. [63]. Results of the
extrapolation fits for the largest two momenta are shown
in Fig. 13.

C. The quasi-PDF from a Fourier transform

The quasi-PDF is defined as the Fourier transform of
the renormalized matrix elements

δq̃f (y, zs, Pz, µ) =

∫
dzPz

2π
eiyPzzh̃fδ (z, zs, Pz, µ), (34)
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FIG. 12: The (upper) real and (lower) imaginary parts of the renormalized matrix elements in the hybrid scheme for the (left)
isovector and (right) isoscalar cobminations.
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FIG. 13: The (upper) isovector and (lower) isoscalar hybrid
renormalized matrix elements with (left) Pz = 4 2π

L
and (right)

Pz = 6 2π
L
. The hatches show the range of data used for the fit

to the extrapolation model and the bands are the result of that
fit starting from λL. The hybrid renormalized data makes
use of the NLO+LRR+RG Wilson coefficients computed at
µ0 = 2e−γE/z (i.e. k = 1) and subsequently evolved to µ = 2
GeV.

and is the LO approximation to the light-cone PDF
within the LaMET framework. To perform this inte-
gral, we first exploit the symmetry of the renormalized

matrix elements about z = 0, i.e. h̃fδ (z, zs, Pz, µ) =

h̃fδ (−z, zs, Pz, µ)
∗, to rewrite the integral only over posi-

tive z

δq̃f (y, zs, Pz, µ) =

∫ ∞

0

dzPz

π
Re h̃fδ (z, zs, Pz, µ) cos(zPzy)

−
∫ ∞

0

dzPz

π
Im h̃fδ (z, zs, Pz, µ) sin(zPzy).

(35)

Finally, we split the integrals up into two regions: i)
0 ≤ z ≤ zL where the integral is performed via a sum over

the lattice data for h̃fδ (z, zs, Pz, µ) and ii) zL < z < ∞
where the integral is performed using the resulting ex-

trapolation for h̃fδ (z, zs, Pz, µ)

δq̃f (y, zs, Pz, µ) =[ zre
L /a∑
z=0

zreL Pz

πN re
zL

+

∫ ∞

zre
L

dzPz

π

]
Re h̃fδ (z, zs, Pz, µ) cos(zPzy)

−
[ zim

L /a∑
z=0

zimL Pz

πN im
zL

+

∫ ∞

zim
L

dzPz

π

]
Im h̃fδ (z, zs, Pz, µ) sin(zPzy),

(36)

where zreL and zimL are the values of z in which the ex-
trapolation integral takes over for the real and imagi-

nary parts of h̃fδ (z, zs, Pz, µ), respectively, and N
re/im ≡

z
re/im
L /a+ 1.
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FIG. 14: The Pz dependence for the (upper) isovector and (lower) isoscalar (left) quark and (right) antiquark NLO+LRR+RGR
light-cone transversity PDF δqf (x, µ). The darker bands are the statistical errors when setting k = 1 and the lighter bands are
the additional systematic errors associated with scale variations by additionally using k = 1/

√
2 and k =

√
2.

D. Matching to the light-cone PDF

The final step in obtaining the light-cone PDF from
the quasi-PDF is to match them perturbatively in αs(µ)
as

δqf (x, µ) =

∫ ∞

−∞

dy

|y|C
−1
δ

(
x

y
,
µ

yPz
, |y|λs

)
δq̃f (y, zs, Pz, µ)

+O
(
Λ2
QCD

x2P 2
z

,
Λ2
QCD

(1− x)2P 2
z

)

≡ C−1
δ

(
x

y
,
µ

yPz
, |y|λs

)
⊗ δq̃f (y, zs, Pz, µ)

+O
(
Λ2
QCD

x2P 2
z

,
Λ2
QCD

(1− x)2P 2
z

)
,

(37)

where C−1
δ (xy ,

µ
yPz

, |y|λs) is the inverse of the perturbative
matching kernel for the transversity distribution, and the

notation ⊗ is used as short-hand for the integral. One
caveat of this method is that the leading power correc-
tions to the matching can be seen to be enhanced when x
is near 0 or 1. Therefore, we must be careful to estimate
the range in x in which these power corrections become
significant and hence spoil the matching procedure.

To see how we obtain the the inverse matching kernel,
we start with the perturbative expansion of the matching
kernel itself

Cδ
(
x

y
,
µ

yPz
, |y|λs

)
= δ

(
x

y
− 1

)
+

∞∑
n=1

αn
s C(n)

δ

(
x

y
,
µ

yPz
, |y|λs

)
,

(38)

where only the NLO Wilson coefficients are known, i.e.

we have only C(1)
δ (xy ,

µ
yPz

, |y|λs) [50, 51, 95, 102]. Next,
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FIG. 15: The (upper) isovector and (lower) isoscalar (left) quark and (right) antiquark transversity PDFs at LO, NLO+LRR,
and NLO+LRR+RGR using the largest momentum Pz = 6 2π

L
and compared with the global analysis from JAM3D-22 [28] and

Radici, Bacchetta [23] which are performed at LO. The darker bands for the NLO+LRR+RGR results are the statistical errors
when setting k = 1 and the lighter bands are the additional systematic errors associated with scale variations by additionally
using k = 1/

√
2 and k =

√
2.

by imposing the definition of the inverse matching kernel

C−1
δ

(
x

z
,
µ

zPz
, |z|λs

)
⊗Cδ

(
z

y
,
µ

yPz
, |y|λs

)
= δ

(
x

y
− 1

)
,

(39)
we find

C−1
δ

(
x

y
,
µ

yPz
, |y|λs

)
= δ

(
x

y
− 1

)
− αsC(1)

(
x

y
,
µ

yPz
, |y|λs

)
+O(α2

s).

(40)

As done in our previous work Ref. [62], we approximate
the integration by defining the integral on a finite-length
grid which can be represented via matrix multiplication
with a matching matrix Cδ

xy to obtain the light-cone PDF
at NLO as

δqf (x, µ) = δq̃f (x, µ)− δy
∑
y

Cδ,NLO
xy q̃f (y, µ), (41)

where δy = 0.001 is the grid size used for the integration.

For the matching coefficients themselves, we also im-
plement LRR and RGR, where the RGR involves run-
ning the coupling from the physical scale µ0 with three
choices of k ∈ [1/

√
2, 1,

√
2] to µ = 2 GeV which allows

for assessing the systematics due to scale variation.

E. Results

As a first check regarding the significance of the power
corrections, we show the momentum dependence of the
NLO light-cone PDFs for both the isovector and isoscalar
flavor combinations using our largest two momenta in
Fig. 14. There we see a relatively mild momentum depen-
dence, which is expected given the observed momentum
convergence in the renormalized matrix elements shown
in Fig. 12.
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Finally, using the largest available momentum of Pz =
6 2π

L , in Fig. 15 we show the quark and antiquark transver-
sity distributions for both the isovector and isoscalar fla-
vor combinations compared to the global analysis from
JAM3D-22 [28] and Radici, Bacchetta [23] which are
both performed at LO.

There are a few things to note about these results.
First, recall that the global analysis and our DNN re-
sults both assume the anti-quark distribution to be zero.
Our x-space matching results in this section favor this
assumption, at least when using an NLO matching ker-
nel.

Further, recall that power corrections in the light-cone
matching lead to a breakdown of the formalism when
x ∼ 0, 1. However, the RGR results also breakdown at
small x, as seen by the onset of oscillations near x ∼ 0.2,
already giving a natural boundary for where we no longer
trust the results.

VII. CONCLUSIONS

In this paper we have presented various extractions of
the transversity isovector and isoscalar quark PDFs, and
their lowest few moments, of the proton from lattice QCD
using a physical pion mass. This work is a continuation
towards the ultimate goal of uncovering the full struc-
ture of the proton from first principles. Additionally, the
matrix elements needed in this work also allow an esti-
mate of the tensor charge gT to be extracted, and our
results show reasonable agreement with other lattice ex-
tractions, as shown in Tab. II. However, our calculations
are performed at a single value of the lattice spacing,
and for the isoscalar case we neglected the disconnected
diagrams.

Regarding the transversity isovector and isoinglet
PDFs, in our first method, we utilized the leading-twist
OPE expansion of the reduced pseudo-ITD to extract the
first few Mellin moments. We found excellent agreement
with the global analysis from JAM3D-22 for the lowest
two moments and minor tensions for the next two mo-
ments. Higher moments could not be reliably extracted.
Next, we used the pseudo-PDF approach, based on short-
distance factorization, to extract an x-dependent PDF
and utilized a deep neural network to overcome the in-
verse problem while remaining as unbiased as possible.
We saw some mild tension with the results from JAM3D-
22 for a few small ranges of x but otherwise mostly saw
agreement. Finally, we used the quasi-PDF approach,
based on LaMET, to calculate the x-dependence PDF
from hybrid-scheme renormalized matrix elements. For
this we found reasonably good agreement with JAM3D-
22 in the moderate region of x, but there is significant
tension with the results from Radici, Bacchetta.

A number of systematics are being ignored here and
are left for future work. These include the use of a sin-
gle lattice spacing, NNLO corrections in αs, power cor-
rections from the use of finite momentum, and isoscalar

disconnected diagrams. We can address the expected sig-
nificance of these systematics, and we have good reason
to expect their effects to be rather small. Regarding the
NNLO corrections, we saw in Fig. 15 the NLO corrections
were relatively mild in the middle x regions, suggesting
that NNLO corrections will be quite small as seen for the
unpolarized proton distribution in our previous work [62].
And, for the disconnected diagrams, we discussed earlier
the expectation that the effects of these diagrams for lo-
cal operator matrix elements would be smaller than the
statistical error based on the study done in Refs. [74, 75].
Further, in our study of the unpolarized proton distri-
bution [62], we saw no evidence of convergence in the
momentum used. However, as seen in Fig. 14, the con-
vergence in momentum is much more convincing for the
transversity distribution.
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Appendix A: Renormalization constant ZT in
RI-MOM scheme

Here we discuss the extraction of the renormalization
constant ZT in the RI-MOM scheme and its subsequent
conversion to the MS scheme at the scale µ = 2 GeV. The
method starts by calculating matrix elements between
off-shell quark states with lattice momenta

apµ =
2π

Lµ
(nµ +

1

2
δµ0), (A1)

where Lµ is the size of the lattice in the µth direc-
tion, nµ ∈ Z, and µ = 0 is the temporal direction.
These matrix elements are computed in the Landau
gauge. The renormalization point is given by (apR)

2 ≡∑3
µ=0 sin

2(apµ), which is inspired by the lattice disper-
sion relation and helps to reduce discretization errors.
Our results for ZT are shown in Fig. 16.

There is a significant dependence on p2R caused by non-
perturbative associated with condensates and discretiza-
tion errors that can be clearly seen from the “fishbone”
structure at large p2R. We had difficulty appropriately
modeling these effects and instead chose to form ratios
of ZT /ZV in an attempt to cancel them as much as pos-
sible, similar to what was done in Ref. [106]. We then use
the conversion factor from RI-MOM to MS for the tensor
current computed in Ref. [107] to three loops. The result-
ing renormalization factors are then in the MS scheme at
the scale µ2 = p2R, and thus we evolve them to the same
scale using the evolution function computed at two loops
in Ref. [108]. We evolve ZT to the scale µ = 2 GeV,
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FIG. 17: Ratio of the tensor to vector current renormalization
factors ZT /ZV as a function of the RI-MOM momentum pR.
The bands show the 18 different fits considered, all overlaid
on top of one another. The AIC-averaged result final result
for the ratio is given in the bottom right corner.

as this is a commonly used scale for reporting results of
nucleon charges. The resulting ratio ZT /ZV after con-
version to MS at µ = 2 GeV is then fit to

ZT /ZV +B/p2R +D1pR +D2p
2
R, (A2)

where last two terms incorporate discretization effects. In
order to remove bias from our choice of fit, we consider
six different variations of this fit form, corresponding to
setting various terms to zero. Specifically, we consider a
linear form (i.e. D2 = 0), a quadratic form (i.e. D1 = 0),
and a linear+quadratic form (i.e. D1 ̸= 0 and D2 ̸= 0).
Then for each of these three, we also consider fits in which
B is zero and non-zero. To further give variation to our
fits, we use three ranges of the data. The first includes
all but the smallest values of p2R, which is always left out.
Then we consider removing more of the small p2R data,
and finally removing the largest p2R data. This gives a
total of 18 fits we consider. To give a final estimate, we
simply take an AIC average over all fits, giving

ZT /ZV = 1.050(17), MS(µ = 2 GeV). (A3)

The results of all these fits are shown in Fig. 17. This,
rather conservative, method for estimating the system-
atic error is justified for this observable which is likely
affected by large systematics.

Appendix B: Three-point function fits

Here we show a handful of fits to the ratios of three-
point to two-point functions used in the main text. All
of these fits utilize our preferred fit strategy, i.e. the two-
state fit to the ratio Rδ in (6) with nexc = 2, where nexc
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FIG. 18: The real parts of the ratio of local (left) isovector and (right) isoscalar three-point to two-point functions for Pz = 0.
The χ2/dof reported, estimate for the ground-state bare matrix element (also represented by a gray band), and tsep fit bands
come from the preferred fit strategy, i.e. the two-state fit to the ratio Rδ with nexc = 2, where nexc is the number of data points
nearest both the source and sink that are not included in the fit. The range in tins of the tsep bands covers the included data
points in the fit.

is the number of data points nearest both the source and
sink that are not included in the fit.

The fits included here are to the local zero-momentum
three to two-point function ratios, shown in Fig. 18,

and several non-local three to two-point function ratios,
shown in Figs. 19 to 22. These include both isovector
and isoscalar combinations.
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FIG. 20: The same as Fig. 19, but for the imaginary parts. Additionally, the zero-momentum matrix elements are not shown,
as these are all consistent with zero (as they are expected to be).
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FIG. 22: The same as Fig. 21, but for the imaginary parts. Additionally, the zero-momentum matrix elements are not shown,
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